The flow of granular solids through circular orifices

C. F. HARWOOD AND N. PILPEL

Department of Pharmacy, Chelsea College (University of London), Manresa Road, London, S.W.3, England

It has been shown that the use of the bulk density term in place of the particle density, in the equation of flow for granular solids passing through a circular orifice, very largely eliminates differences due to the shape, rugosity, density, porosity and friction of the particles.

The equation

$$Do = (1.136 + 0.000173Dp) \left(\frac{4W}{60\pi\rho B\sqrt{g}}\right) \frac{1}{0.903 + 0.675 \log Dp}$$

has been tested on seven different materials and has been found to predict the flow of single and binary systems with an overall accuracy of $\pm 5\%$ and $\pm 10\%$ respectively.

The flow of granular materials through circular orifices has been studied previously and equations have been derived which allow predictions of the flow rate to be made. Most of these equations have been either empirical or based on dimensional analysis (Deming & Mehring, 1929; Bingham & Wikoff, 1931; Rose & Tanaka, 1959; Fowler & Glastonbury, 1959; Brown & Richards, 1959). Relatively few have been based on theoretical considerations (Brown, 1961; Zenz, 1962; McDougall & Evans, 1965; Shinohara, Demitsu & others, 1968).

Brown & Richards (1959) proposed a dimensionally balanced equation* of the form

where k was a measure of the width of the empty annulus observed at the periphery of the orifice. This equation was found to apply to materials such as coal, glass beads, tapioca and sand flowing through a wide range of orifice sizes (Brown & Richards, 1959). Variation in the parameters A and k were shown to be due, *inter alia*, to variations in particle size and shape of the materials.

Jones and Pilpel (1966) considered one material, magnesia, which was available in a large range of particle sizes, and were able to study the effect of particle size without the complicating effects of variation in shape, rugosity and density, etc.

By writing equation (1) in the form

$$Do = A \left(\frac{4W}{60\pi\rho p\sqrt{g}}\right)^{\frac{1}{n}} \qquad \dots \qquad \dots \qquad (2)$$

they were able to show that the parameters A and n were functions of particle size. Although difficulties then arise in regard to the dimensions of the terms A and n, which in equation (1) were dimensionless, having established a numerical relation between A and n and particle size, predictions could then be made of the flow rate of any other given size fraction.

* For rotation see p. 729.

For equation (2) to have practical importance it would be necessary to include a term or terms which would account for variations in shape and rugosity of the particles of different materials. Previous equations have involved angular properties (Takahashi, 1935; Franklin & Johanson, 1955), others have included a shape factor (Rose & Tanaka, 1959; Ahmad & Pilpel, 1969). Many workers have used a bulk density term (Fowler & Glastonbury, 1959; McDougall & Evans, 1965; Beverloo, Leniger & Van der Velde, 1961) since this embodies the shape, rugosity and frictional characteristics of the materials.

The high correlation of bulk density and flow rate has been pointed out in a recent paper (Sumner, Thompson & others, 1966) and Delaplaine (1956) has shown that the bulk density of a flowing bed is only 0.02 units lower than that of the static bed.

An advantage of bulk density is that it compensates for differences between the apparent and effective particle densities: differences which may be very large (up to 40%) in the case of granulated cohesive materials (Harwood & Pilpel, 1968).

This study is a test of the use of the bulk density term instead of the particle density term to establish an equation of the same form as equation (2), which can be applied to materials that differ considerably in the shape, rugosity, density and frictional characteristics of their particles.

EXPERIMENTAL

Materials

The materials tested were smooth and irregular griseofulvin granules, silica sand and glass beads. The reported results for magnesia (Jones & Pilpel, 1966) and for smooth and irregular lactose granules (Ahmad & Pilpel, 1969), obtained using the same apparatus, have been included to extend the generality of the results obtained.

The materials were separated into sieve fractions on British Standard sieves and surface fines were removed by sieving 20–40 g portions on an Alpine Airjet sieve for 3 min. The samples were dried in an air oven and stored in stoppered glass jars.

The tap and bulk densities were measured using a standard apparatus (British Standard, 1948). The particle densities were measured using the specific gravity bottle method.

Some of the physical properties of the materials are given in Table 1.

		Arithmetic	1	Density (g cm ⁻⁸))
Material	B.S.S. size	(μm)	Particle	Bulk	Тар
	60–85 44–60	215 300	1·430 1·431	0·507 0·463	0·551 0·500
Irregul ar griseofulvin granules	2544 2225	430 655	1·433 1·428	0·407 0·393	0·456 0·438
	16-22 10-16 8-10	855 1340 1866	1·435 1·435 1·421	0·385 0·378 0·374	0·435 0·419 0·419
Smooth	16-22 12-16	855 1200	1·448 1·443	0·556 0·538	0.609 0.579
granules	10-12 8-10 6-8	1866 2435	1.432 1.421 1.403	0·522 0·507 0·500	0·556 0·556 0·551

 Table 1. Sieve fractions and densities of granular materials

Table 1-continued

		Arithmetic	Density (g cm ⁻³)			
Material	B.S.S. size	(μm)	Particle	Bulk	Tap	
Sand	<85 60-85 44-60 25-44 16-25	<180 215 300 475 800	2.653 2.625 2.642 2.698 2.823	1·212 1·317 1·371 1·434 1·464	1·437 1·543 1·594 1·661 1·661	
Glass beads	60-85 36-52 25-44	<53 113 150 213 368 486 605	2·965 2·962 2·970 2·973 2·978 2·981 2·979	1·289 1·716 1·737 1·746 1·818 1·717 1·774	1.409 1.876 1.765 1.886 1.848 1.855 1.896	
Magnesia	300-350 150-200 72-150 36-52 22-36 16-22 10-16 8-10	48 90 158 358 561 851 1340 1866	3·439 3·458 3·431 3·456 3·458 3·445 3·460 3·456	1.000 0.920 0.903 0.856 0.870 0.860 0.860 0.856	1.095 0.988 0.985 0.938 0.930 0.930 0.941 0.933	
Rounded lactose granules	72–150 52–72 36–52 22–36 16–22 12–16 10–12 8–10 6–8	160 252 358 560 851 1201 1538 1866 2435	1.535 1.526 1.535 1.536 1.500 1.541 1.535 1.536 1.536 1.550	0.672 0.556 0.511 0.505 0.495 0.484 0.483 0.501 0.489	0.738 0.608 0.563 0.542 0.529 0.529 0.542 0.542 0.536 0.535	
Irregular lactose granules	72-150 52-72 36-52 22-36 16-22 12-16 10-12	160 252 358 560 851 1201 1538	1.544 1.551 1.523 1.501 1.563 1.544 1.502	0.555 0.519 0.512 0.488 0.481 0.475 0.476	0.645 0.588 0.575 0.555 0.548 0.535 0.525	

Apparatus

The apparatus was as used by Jones & Pilpel (1966). It consisted of a vertical copper tube 30 cm long and 3.82 cm internal diameter. A Perspex base plate held a shutter and a sliding orifice plate into which six circular orifices with mean diameters of 0.6-1.7 cm had been cut.

Precautions

In measuring the flow rate from a vertical copper tube, certain restrictions have been well established by previous authors in order to avoid the complicating effects of apparatus geometry (for review see Jones, 1966). End effects arising during the flow measurements are eliminated by measuring the flow rate only when steady conditions are obtained, that is, over the central 3/5ths (approximately) of the flowing column.

Blocking of the orifice will occur when the particle size, Dp, is approximately 1/6th of the orifice size, Do. The conditions must be such that $Do \ge 6Dp$. Finally, the column diameter Dc must be such that $Dc \ge 2.5$ Do to eliminate wall effects (Beverloo, Leniger & Van der Velde, 1961; Brown & Richards, 1959; Rose & Tanaka, 1959).

Procedure

With the above reservations in mind the column was filled with the material. The mass emerging from the various sized orifices was then measured in time intervals ranging from 5-60 s. Each measurement was made in triplicate and it was found that the maximum variation between separate determinations was $\pm 5\%$.

RESULTS

The measured flow rates for the 42 size fractions of the seven different materials when flowing through six orifice sizes are given in Table 2.

The effect of particle size on the flow rate is shown in Fig. 1. The curves follow the anticipated form (Rose & Tanaka, 1959; Jones & Pilpel, 1966) where the flow rate increases with decrease of particle size to a maximum at approximately 200 μ m and then falls rapidly as the cohesive forces become increasingly effective.

The present study has been concerned only with free flowing materials and for this reason only those size fractions above 200 μ m have been considered in the analysis to follow.

FIG. 1. Flow rate versus particle size for different materials passing through a 1.30 cm orifice. O, Glass beads; \blacktriangle , sand; \blacklozenge , magnesia and \triangle , irregular griseofulvin.

DISCUSSION

From equation (2) it is seen that a plot of the logarithm of Do against the logarithm of $\left(\frac{4W}{60\pi\rho p\sqrt{g}}\right)$ should give a straight line, the slope of which is 1/n and the intercept log A. The values of 1/n and A have been shown to depend on particle size, and, since in the present study 42 size fractions were available and the results were required using both particle density and also the bulk density, the readings were subjected to regressional analysis using a digital computer (Elliott 803) and the correlation coefficients were in all cases better than 0.93. The calculated values of both n and A are given in Table 3.

724

						······································		
Mean	Orifice diameter (cm)							
size (µm)	0.605	0.707	0.900	1.130	1.330	1.650		
Griseofulvin								
1rregular 1866 1340 855 655 430 300	B 47-49 59-61 75-76 99-100	B 82-86 109-112 129-130 157-159 206-207	B 124-125 160-165 185-188 220-226 283-287	207–221 275–281 347–349 399–400 462–475 579–584	383–398 456–484 565–575 659–662 753–768 879–897	836–846 907–964 10751109 1175–1198 1411–1441 B		
215 Smaath	120-121	235-243	302-331	604–618	1044-1082	В		
2435 1866 1540 1200 851	B B 81-85 105-105	B B 140–142 180–182 224–229	B 150–163 199–204 255–260 313–320	230–254 352–354 446–451 549–560 651–667	490–510 592–605 727–746 923–938 1063–1075	950–971 1105–1132 1310–1380 1542–1692 1732–1847		
800 475 300 215		583–614 589–611 698–726 624–640	780–792 912–949 1045–1075 941–959	1541–1549 1682–1702 1722–1744 1573–1617	2470–2600 2841–2849 2911–2949 2637–2661	4750-4772 5023-5066 4595-4696 4680-4692		
Glass beads 605 485 368 284 213		514–545 515–554 715–742 728–762 701–711	1256–1284 1210–1216 1501–1525 1526–1546 1505–1515	2320-2340 2138-2190 2572-2625 2709-2729 2562-2580	3657–3735 3500–3510 4154–4194 4203–4217 4087–4120	 		
Mean	Orifice diameter (cm)							
particle	0.602	0.740	0.909	1.140	1.252	1.686		
Magnesia	0.002	0.140	0.999	1.140	1.333	1.080		
1866 1340 851 560 358 252 160	B B 135-140 171-175 208-212 245-255 248-260	B 241-249 288-305 352-358 397-404 398-410	B 322-388 428-453 501-538 610-621 670-684 638-678	524-560 484-692 860-870 1015-1020 1158-1175 1218-1262 1180-1210	936-953 1128-1158 1401-1413 1610-1630 1835-1905 1916-1958 1760-1784	1788–1836 2129–2148 2598–2650 2798–2860 3010–3062 3034–3148 2684–2840		
Mean particle			Orifice d	iameter (cm)				
size (µm) Lactose Irregular	0.58	0.75	0.86	1.10	1.31	1.60		
1540 1201 851 560 358 252 160	B B 74-82 95-103 109-118 121-130	B B 123-129 154-162 192-216 216-230 226-244	B 149–164 188–199 230–246 293–314 318–342 325–347	318-331 345-358 390-408 474-495 550-592 626-648 615-654	547-568 590-612 664-675 806-834 972-1044 982-1038 1054-1096	1005–1035 1090–1140 1221–1242 1427–1476 — —		
Smooth 1540 1201 851 560 358 252 160	B B 66-69 78-92 106-114 126-130 160-170	B 120–128 140–161 180–192 225–234 261–272 314–330	156–165 180–192 224–236 260–282 320–335 368–378 456–484	336-358 401-408 468-486 548-574 638-652 743-756 878-892	585-614 664-690 780-798 880-912 1000-1022 1190-1215 1404-1436	1095–1148 1208–1251 1356–1392 1500–1564 1622–1672 1756–1804 2092–2140		

Table 2. Flow rates for griseofulvin, sand, glass beads, magnesia and lactose (g min⁻¹)

B denotes orifice blocked.

Mean particle size				4
$Dp(\mu m)$	Log Dp	n	Using oB	Using op
Griseofulvin Irregular	0 - F			6
1840	3.265	3.447	1.477	2 ·190
1340	3.127	2.929	1.409	2.224
855	2.932	2.965	1.324	2.152
655	2.816	2.858	1.280	2.016
430	2.633	2.801	1.222	1.919
300 215	2.477 2.332	2·629 2·547	1.198	1·840 1·784
Smooth				
2435	3.387	3.536	1.509	2.032
1866	3.271	3.291	1.442	2.007
1540	3.188	2.793	1.363	1.961
1200	3.079	2.865	1.274	1.802
851	2.930	2.733	1.222	1.736
Magnesia	2.271	2.090	1.406	1.793
1000	3.127	2.030	1.490	1.600
851	2.930	2.930	1.305	1.573
560	2.748	2.746	1.251	1.515
358	2.554	2.639	1.186	1.455
252	2.401	2.489	1.174	1.438
160	2.204	2.360	1.214	1.492
Sand				
800	2.903	2.535	1.246	1.248
475	2.677	2.564	1.197	1.208
300	2.477	2.271	1.159	1.195
215	2.332	2.393	1.172	1.329
Glass beads				
605	2.782	2.731	1.175	1.096
485	2.686	2.706	1.189	1.120
308	2.300	2.364	1.129	1.020
204	2.433	2.546	1.116	1.043
Lactose	2 520	2 540	1 110	1045
Irregular				
1540	3.188	3.056	1.416	2.046
1201	3.079	3.160	1.377	1.967
851	2.930	2.995	1.332	1.935
560	2.748	2.878	1.257	1.839
358	2.554	2.815	1.194	1.735
252	2.401	2.693	1.180	1.736
160	2.204	2.625	1.198	1.734
Smooth				
1540	3.188	3.032	1.405	1.995
1201	5.079	3.039	1.335	1.923
851	2.930	2.972	1.279	1.844
258	2.140	2.032	1.170	1.750
252	2:401	2.632	1.157	1.673
160	2.204	2.552	1.161	1.576
100	2 20 1			10/0

Table 3. Values of constants A and n

In Figs 2 and 3 the values of A, using ρp and ρB respectively, are plotted against particle size. It can be seen immediately that by using ρB a good correlation is found between A and the particle size for all of the materials examined. Applying regressional analysis to obtain the best straight line through the points in Fig. 3 gives the relation A = 1.1356 + 0.000173 Dp. The correlation coefficient for this line is 0.940 which represents an excellent fit for all the points.

FIG. 2. Variation of parameter A with particle size using ρp . $\bigcirc - \bigcirc$, Irregular Igriseofulvin; $\triangle - \triangle$, irregular lactose; $\blacktriangle - \blacktriangle$, smooth lactose; $\blacklozenge - \blacklozenge$, smooth griseofulvin; M-M, magnesia; S-S, sand_and G-G, glass beads.

FIG. 3. Variation of parameter A with particle size using ρB (all materials).

	Orifice Mean		Flow rate	Frror	
Material Griseofulvin	Do (cm)	Dp (μm)	Found	Calculated	%
Irregular	0·707 1·130 1·330	855 300 1340	109–112 579–584 456–484	101 595 520	-7 + 2 + 7
Smooth	0·900 1·650 1·650	1540 1200 851	199–204 1542–1692 1731–1847	204 1480 1720	0 -4 -1
Magnesia	0·740 1·140 1·686	252 560 1866	397–404 1015–1020 1788–1836	397 1030 2030	$0\\+1\\+11$
Sand	0·707 1·140 1·650	215 475 800	624–640 1682–1702 4750–4772	547 1763 4620	-12 + 3 - 3
Glass beads	0·707 1·140 1·330	284 485 605	728-762 2138-2190 3657-3735	689 2190 3250	-5 + 1 - 11
Lactose Irregular	0·580 0·860 1·600	252 560 1540	109–118 230–246 1005–1035	127 265 1066	+7 +8 +3
Smooth	0·750 1·310 1·600	252 560 1201	261–272 880–912 1208–1251	259 890 1210	$-1 \\ 0 \\ 0$

 Table 4. Comparison of predicted and measured flow rates

 Table 5. Comparison of measured and predicted flow rates for binary mixtures of magnesia

		Mixture						
D p (μm)	Concn (% w/w)	Dp ₂ (μm)	Concn (% w/w)	ρB g/cm³	Do (cm)	W calc. (g/min)	W obs. (g/min)	Error %
	10		90	0·910 0·910	0·898 1·686	420 2761	321–357 2184–2431	+17·6 +13·6
253	50	1340	50	0·965 0·965	0·898 1·686	588 3410	489–533 698–706	+10.3 +11.4
	90		10	0·954 0·954	0·898 1·686	682 3525	698706 31683268	-2.3 +7.9
	10		90	0·900 0·900	0·898 1·686	392 2627	328–334 2256–2292	+17.0 +14.6
561	50	1340	50	0.888 0.888	0.898 1.686	458 2988	431–435 2686–2754	+ 8.5 + 5.3
	90		10	0·875 0·875	0∙898 1∙686	522 3065	507-517 2837-2914	+ 5·2 + 1·0
	10		90	0·877 0·877	1·140 1·686	1035 3095	1036–1040 3040–3092	0
851	50	561	50	0.878 0.878	1·140 1·686	997 3048	963–988 2842–2911	+ 1.0 + 4.6
	90		10	0·867 0·867	1·140 1·686	928 2895	914–921 2753–2830	+ 1.0 + 2.3
	20		80	0·930 0·930	0.603 1.686	173 3215	149–151 2758–2880	+14.6 +11.6
253	40	851	60	0.958 0.958	0.603 1.686	198 3398	176–190 3074–3160	+ 4.2 + 7.5
	60		40	0.955 0.955	0.603 1.686	218 3485	213–242 3168–3223	$+ \frac{0}{8 \cdot 1}$

The relation between n and log Dp is shown in Fig. 4 for all of the materials tested. The regression line for all these points was found to be $n = 0.9034 + 0.6748 \log Dp$. The correlation coefficient was 0.844 which signifies a good fit for all the materials.

Thus using the bulk density in equation (2) leads to a general equation of the form

$$Do = (1.136 + 0.000173Dp) \left(\frac{4W}{60\pi\rho B\sqrt{g}}\right)^{\overline{0.903} + 0.675\log Dp} \dots \dots (3)$$

for relating the flow rate to the orifice size and the particle size of the material.

This equation has been tested by comparing the calculated values with the experimental values of flow rates and the results are shown in Table 4. It can be seen that the average agreement i: $\pm 5\%$ which, considering the wide range of materials tested, is regarded as very satisfactory.

stituting into equation (3) being taken as geometric means.

Table 5 shows that the agreement between the observed and predicted flow rates for the mixtures was about $\pm 10\%$, which was again very satisfactory.

The remaining errors are probably due to the use of sieving as a method for classifying and measuring particle size, to segregation of particles in mixtures of sizes and to the use of the B.S. method for measuring bulk density. It is possible that a better method would be to measure the bulk density after fluidizing the sample and then allowing it to settle by slowly reducing the air flow. This value should be closer to that of the flowing material, which was shown by Delaplaine (1956) to be 0.02 units lower than the static bulk density.

In conclusion it should be noted that further work on a variety of materials containing a range of particle sizes will be desirable to establish the generality of the present findings for predicting the flow rates of granular pharmaceuticals.

Notation

A: An empirical function of Dp; Dc: Tube diameter, cm; Do: Orifice diameter, cm; Dp: Particle diameter, μ m; g: Acceleration due to gravity, cm s⁻²; k: A function of the empty annulus dependent on Dp; n: An empirical function of Dp; ρ p: Apparent particle density, gcm⁻³; ρ B: Bulk density, g cm⁻³; W: Flow rate, g min⁻¹.

Acknowledgements

The authors wish to thank Helen Legge and Mr. N. Barnett of the Chelsea College Computer Unit for their help in processing the data.

They also wish to thank the ICI Pharmaceuticals Division for helpful discussions and the Directors of the ICI for the provision of a research award for C.F.H.

REFERENCES

AHMAD, M. & PILPEL, N. (1969). Rheol. Acta, in the press.

BEVERLOO, W. A., LENIGER, H. A. & VAN DER VELDE, J. (1961). Chem. Engng Sci., 15, 260-269.

BINGHAM, E. C. & WIKOFF, R. W. (1931). J. Rheol., 2, 395-400.

British Standard (1948), 1460.

BROWN, R. L. (1961). Nature, Lond., 191, 458-461.

BROWN, R. L. & RICHARDS, J. C. (1959). Trans. Instn chem. Engrs, 37, 108-119.

DELAPLAINE, J. W. (1956). A.I.Ch.E.J., 2, 127.

DEMING, W. E. & MEHRING, A. L. (1929). Ind. Engng Chem. ind. Edn, 21, 661-665.

FOWLER, R. I. & GLASTONBURY, J. R. (1959). Chem. Engng Sci., 10, 150–156.

FRANKLIN, F. C. & JOHANSON, L. N. (1955). Ibid., 4, 119-129.

HARWOOD, C. F. & PILPEL, N. (1968). J. pharm. Sci., 57, 478-481.

JONES, T. M. (1966). Flow Properties of Magnesia, Ph.D. Thesis, University of London.

JONES, T. M. & PILPEL, N. (1966). J. Pharm. Pharmac., 18, 81-93.

McDougall, I. R. & Evans, A. C. (1965). Rheol. Acta, 4, 218-225.

ROSE, H. E. & TANAKA, T. (1959). The Engineer, 208 (2), 465–469.

SHINOHARA, K., DEMITSU, Y., GOTOH, K. & TANAKA, T. (1968). I & EC Process Des. and Dev., 7, 378-383.

SUMNER, E. D., THOMPSON, H. O., POOLE, W. K. & GRIZZLE, J. E. (1966). J. pharm. Sci., 55, 1441–1445.

TAKAHASHI, H. (1935). Bull. Inst. phys. chem. Res. Japan, 12, 984.

ZENZ, F. A. (1962). Petrol. Refiner, 41, 159-168.